DENEY SERTİFİKASI Test Certificate

Façade Testing Institute

Müşterinin Adı ve Adresi / Customer's Name & Address:

Selectron Elektrokimua San. ve Tic. Ltd. Sti.

Atatürk Bulvarı Köstemir Cad. No:74 Silivri / İstanbul

Numunenin Adı ve Tarifi / Sample's Name & Description:

Arbor Timber Curtain Wall System 50

Numune Kabul Tarihi / Acceptence Date of Item:

FTI Proje No / FTI Project No:

2022.1478

Uygulanan Normlar / Norms Applied:

EN ISO 12631.EN ISO 10077-2

Sonuçlar / Results:

Thermal Transmittence of Curtain Wall: Ucw = 1,25 W/m²K

Test Tarihi/ Date of Test

Sayfa Sayısı / Number of Pages

1/14

03.03.2022

Deney laboratuvarı olarak faaliyet gösteren FTI Fasad Teknoloji Merkezi, TÜRKAK 'tan AB-0531-T numarası ile TS EN ISO/IEC 17025 standardına göre akredite edilmiştir.

FTI Facade Testing Institute accredited by TURKAK under registration number AB-0531-T for TS EN ISO/IEC 17025 as test laboratory.

Türk Akreditasyon Kurumu (TÜRKAK) deney laboratuvarlarının tanınırlığı konusunda Avrupa Akreditasyon Birliği (EA) ile Çok Taraflı Anlaşma ve Uluslararası Laboratuvar Akreditasyon Birliği (ILAC) ile karşılıklı tanıma anlaşması imzalamıştır.

Turkish Accreditation Agency (TURKAK) is a signatory to the European co-operation for Accreditation (EA) Multilateral Aggreement (MLA) and to the International Laboratory Accreditation Cooperation (ILAC) Mutual Recognation Arrangement (MRA) for the recognation of test reports.

Deney ve/veya ölçüm sonuçları, genişletilmiş ölçüm belirsizlikleri (olması halinde) ve deney metotları bu sertifikanın tamamlayıcı kısmı olan takip eden sayfalarda verilmiştir. Bu sertifika yalnız test edilen numuneye ait sonuçları içerir ve ekte sunulan ilgili test raporu ile birlikte geçerlidir. The test and/or measurement results, the uncertainties (if applicable) with confidence probability and test methods are given on the following pages. This certificate includes the test results of the specimen which is identified above and its valid with the related test report.

Tarih / Date 04.03.2022

Hazırlayan / Prepared by

Onaylayan / Approved by

Emre ARSKAN

Test Milhendisi / Testing Engineer

Laboratuvar Mückiru / Laboratory Manager

FTI Fasad Teknoloji Merkezi / FTI Façade Testing Institute
Çakıl Mahallesi Şehit Teğmen Tamer Aydın Sok. No: 76/2 34540 Çatalca / İstanbul / TÜRKİYE

Tel: +90 212 776 42 25 Fax: +90 212 776 40 58-59 mail: info@fti-europe.com

ANALYSIS REPORT

Referenced Method : EN ISO 12631 Thermal performance of curtain walling – Calculation of thermal

F 15.20 REV NO: E 09/2020

transmittance

Product / Project : Arbor Timber Curtain Wall System 50

Prepared by : Onur ÖZBEK

Report No Date

140.1735.1 / 2022

2/14

1. PREFACE

This report contains the results of thermal transmittance analysis, which were performed by FTI Facade Testing Institute at the address; Çakıl Mah. Şehit Teğmen Tamer Aydın Sok. No: 76/2 34540 Çatalca – Istanbul / TURKIYE.

Test sample is Arbor Timber Curtain Wall System 50 has been designed by Selectron Elektrokimya San. ve Tic. Ltd. Sti.

2. CLIENT

Selectron Elektrokimya San. ve Tic. Ltd. Şti. Atatürk Bulvarı Köstemir Cad. No:74 Silivri / İstanbul

3. ANALYSIS METHODS

Thermal transmittance analysis has been carried out according to the standards indicated below.

Document No	Date of Publication	Content of Document
EN ISO 12631	2017	Thermal performance of curtain walling – Calculation of thermal
		transmittance
EN ISO 10077-2	2017	Thermal performance of windows, doors and shutters – Calculation of
		thermal transmittance - Part2: Numerical Method for Frames

Single equivalent thermal conductivity method is used in accordance with EN ISO 10077-2 for assessment of cavities and single assessment method is used in in accordance with EN ISO 12631 for the curtain walling calculation. Thermal joints results detailed in the report are provided by computer simulation using Frame Simulator Software Program.

Details submitted by the customer are taken into account in material assignments. Non-continuous materials such as corner wedges, glass supporter elements etc. are disregarded for frame analysis.

4. ANALYZING TEAM

Thermal transmittance analysis was performed on 03.03.2022 by the followings:

Emre ARSLAN

FTI

Laboratory Manager

Onur ÖZBEK

FTI

Testing Engineer

5. DESCRIPTIONS OF THE SYSTEM

Type of sample

Curtain Wall

System name

Arbor Timber Curtain Wall System 50

Dimensions of sample

855 x 1785 mm

Surface area of sample

1,52 m²

Report No **Date**

140.1735.1 / 2022

04.03.2022

3/14

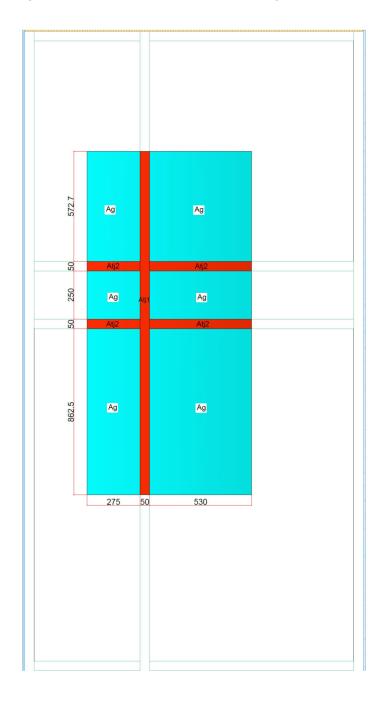
Glass type (vision)

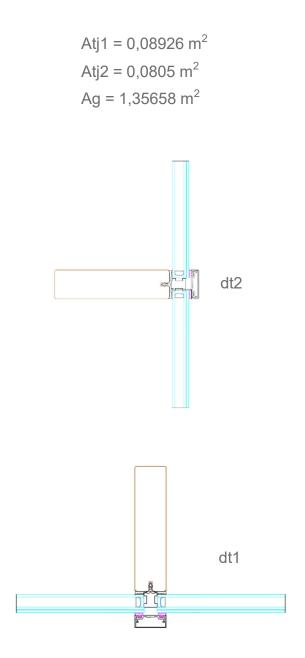
 W/m^2K $Ug_v = 1.1$

External: 4 mm tempered low-e

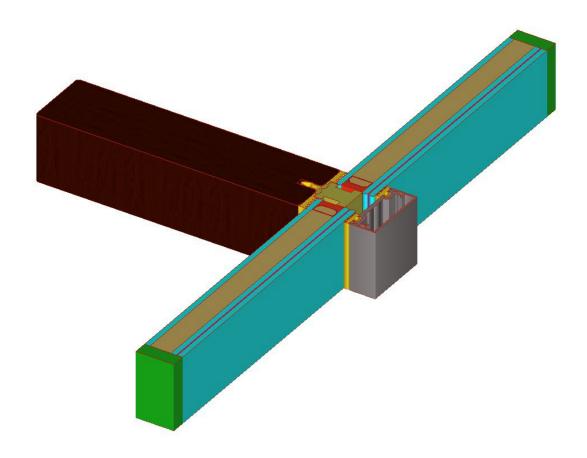
Gap: 16 mm Argon

Internal: 44.2 mm

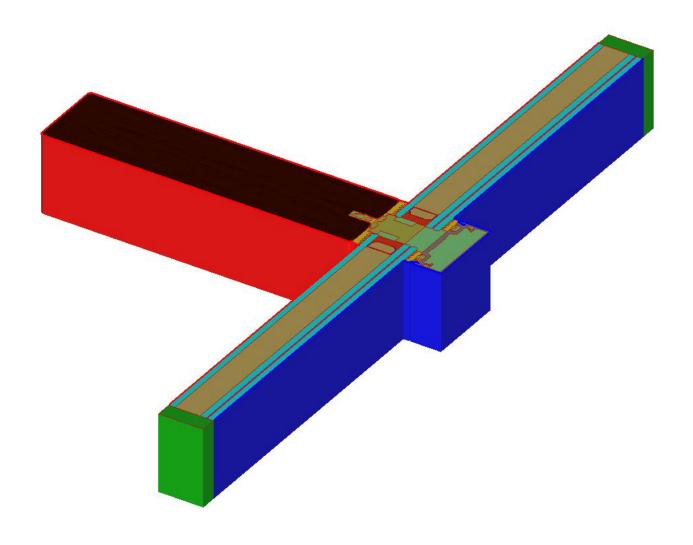

Please refer to detailed drawings presented on pages 12-14 for the system details. Information in the table above, detailed system drawings and information inside have been submitted to FTI Façade Testing Institute under the responsibility of customer.


6. INITIAL CONDITIONS

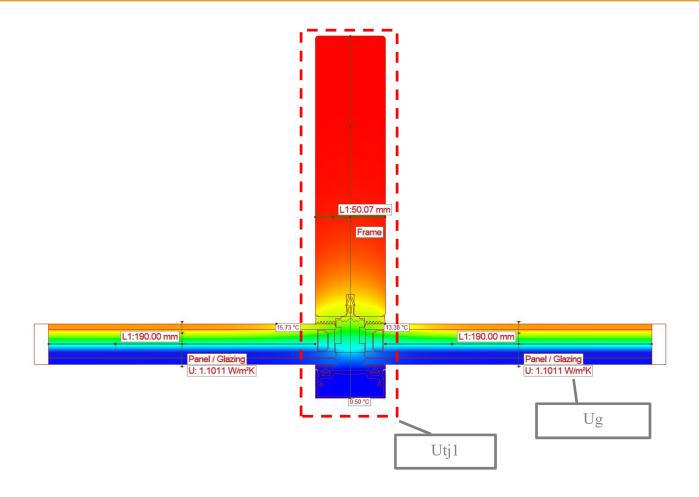
 ^{0}C Outdoor Temperature 20 °C Indoor Temperature


7. SYSTEM DETAILS & THERMAL TRANSMITTANCE ANALYSIS

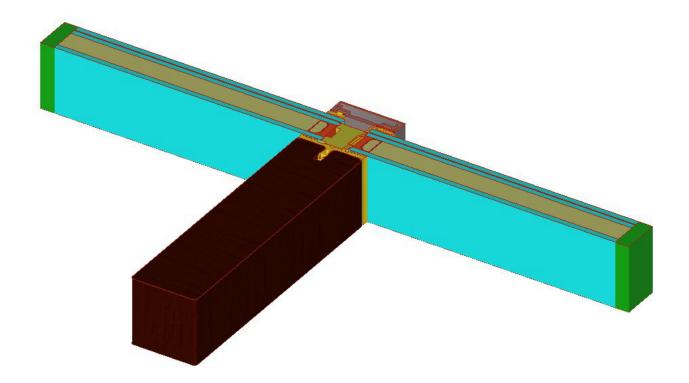
System details and thermal conduction analysis are detailed below:



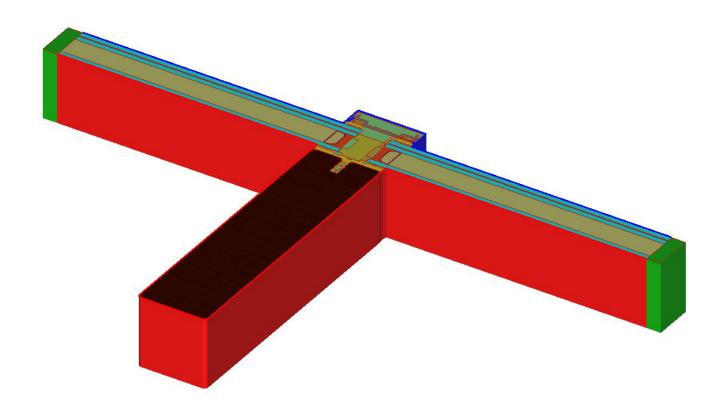
7.1 Thermal Transmittance of Thermal Joint - Detail 1


Name	Туре	Cavity type	λx [W/mK]	λy [W/mK]	ε	Qperm [q/m²]	Color
Soda lime glass	Standard		1.0000	1.0000	0.900	500.000	
Silicone pure	Standard		0.3500	0.3500	0.900	500.000	
EPDM sponge formed	Standard		0.0500	0.0500	0.900	500.000	
Adiabatic	Adiabatic		0.0000	0.0000	0.900	500.000	
EPDM	Standard		0.2500	0.2500	0.900	500.000	
PVC rigid	Standard		0.1700	0.1700	0.900	500.000	
Aluminium (raw)	Standard		160.0000	160.0000	0.300	500.000	
Softwood	Standard		0.1300	0.1300	0.900	500.000	
Polysobutylene	Standard		0.2000	0.2000	0.900	500.000	
Standard	Standard		0.0221	0.0221	0.900	500.000	

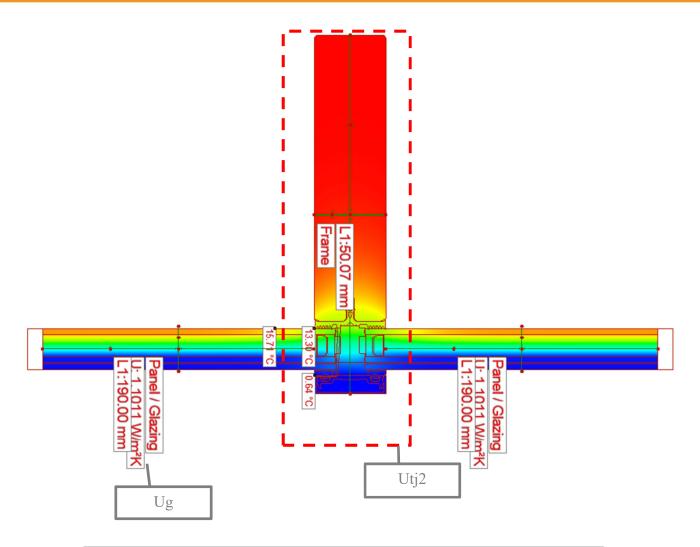
ID	Name	Туре	Col.	Boundary T [°C]	R type	R [m²K/W]	Gas type	Flow rate type	Flow rate [W/m ²]	U-Factor surface	Flow dir.
0	Internal	Environment air		20.000	Constant	0.1300	Air	Constant	0.000	Use segment settings	
1	External	Environment air		0.000	Constant	0.0400	Air	Constant	0.000	Use segment settings	



	Calculated results for detail tj1 thermal joint						
	Frame Simulator Utj (thermal transmittance of detail tj 1)	Atj1 (Area of detail tj1)					
Utj1	2,4352 W/m²K	0,08926 m²					


	Frame Simulator Ug (thermal transmittance of glass)
Ug	1,1 W/m²K

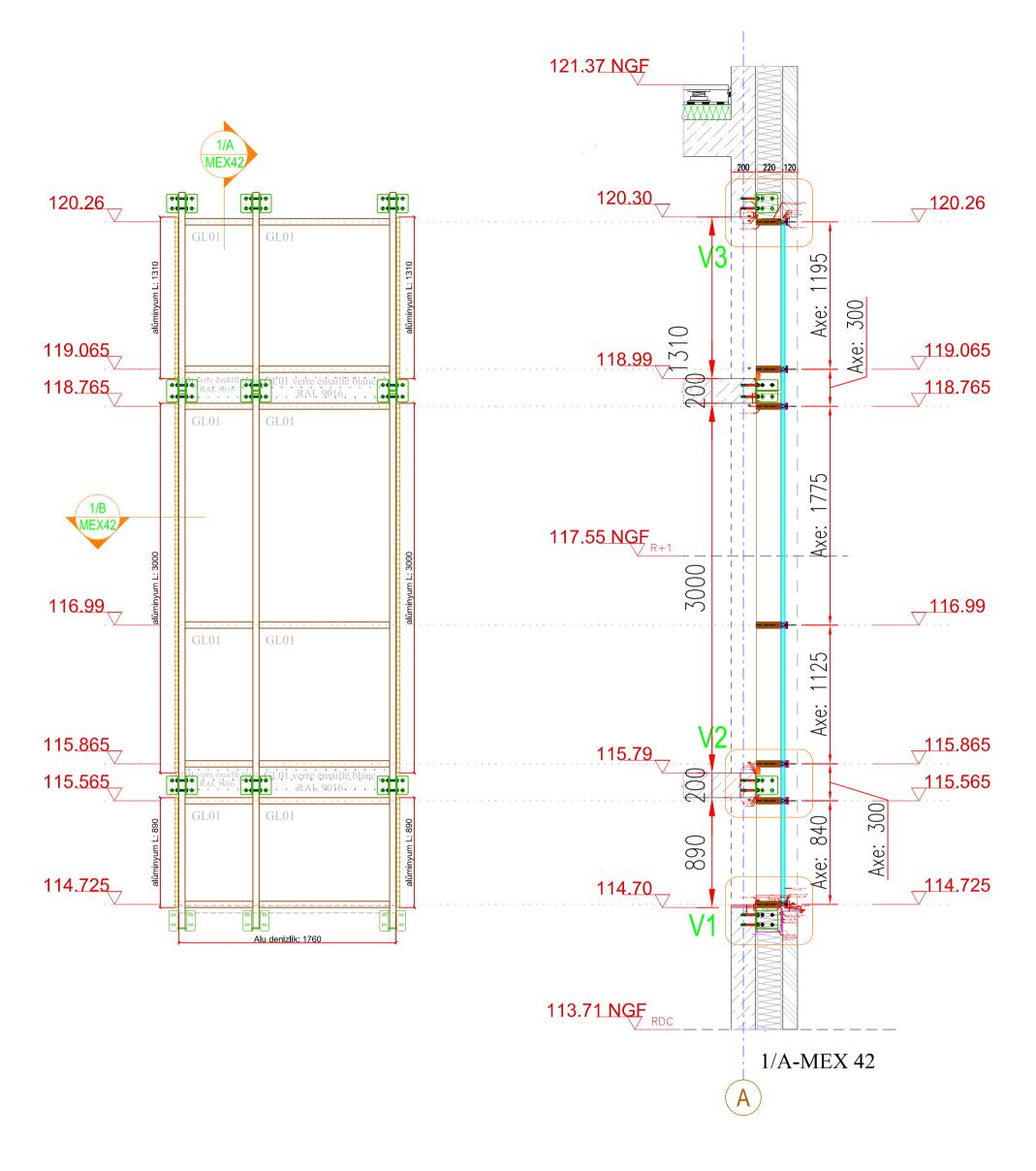
7.2 Thermal Transmittance of Thermal Joint - Detail 2

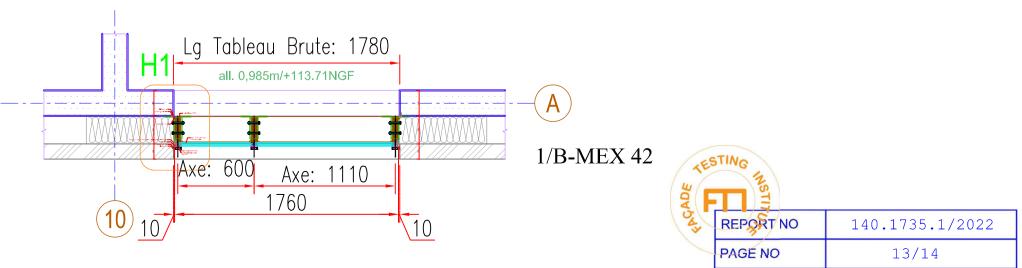

Name	Туре	Cavity	λx [W/mK]	λy [W/mK]	3	Qperm [q/m²]	Color
Softwood	Standard		0.1300	0.1300	0.900	500.000	
Soda lime glass	Standard		1.0000	1.0000	0.900	500.000	
Silicone pure	Standard		0.3500	0.3500	0.900	500.000	
EPDM	Standard		0.2500	0.2500	0.900	500.000	
EPDM sponge formed	Standard		0.0500	0.0500	0.900	500.000	
PVC rigid	Standard		0.1700	0.1700	0.900	500.000	
Polysobutylene	Standard		0.2000	0.2000	0.900	500.000	
Adiabatic	Adiabatic		0.0000	0.0000	0.900	500.000	
Aluminium (anodized/coated)	Standard		160.0000	160.0000	0.900	500.000	1
Standard	Standard		0.0221	0.0221	0.900	500.000	

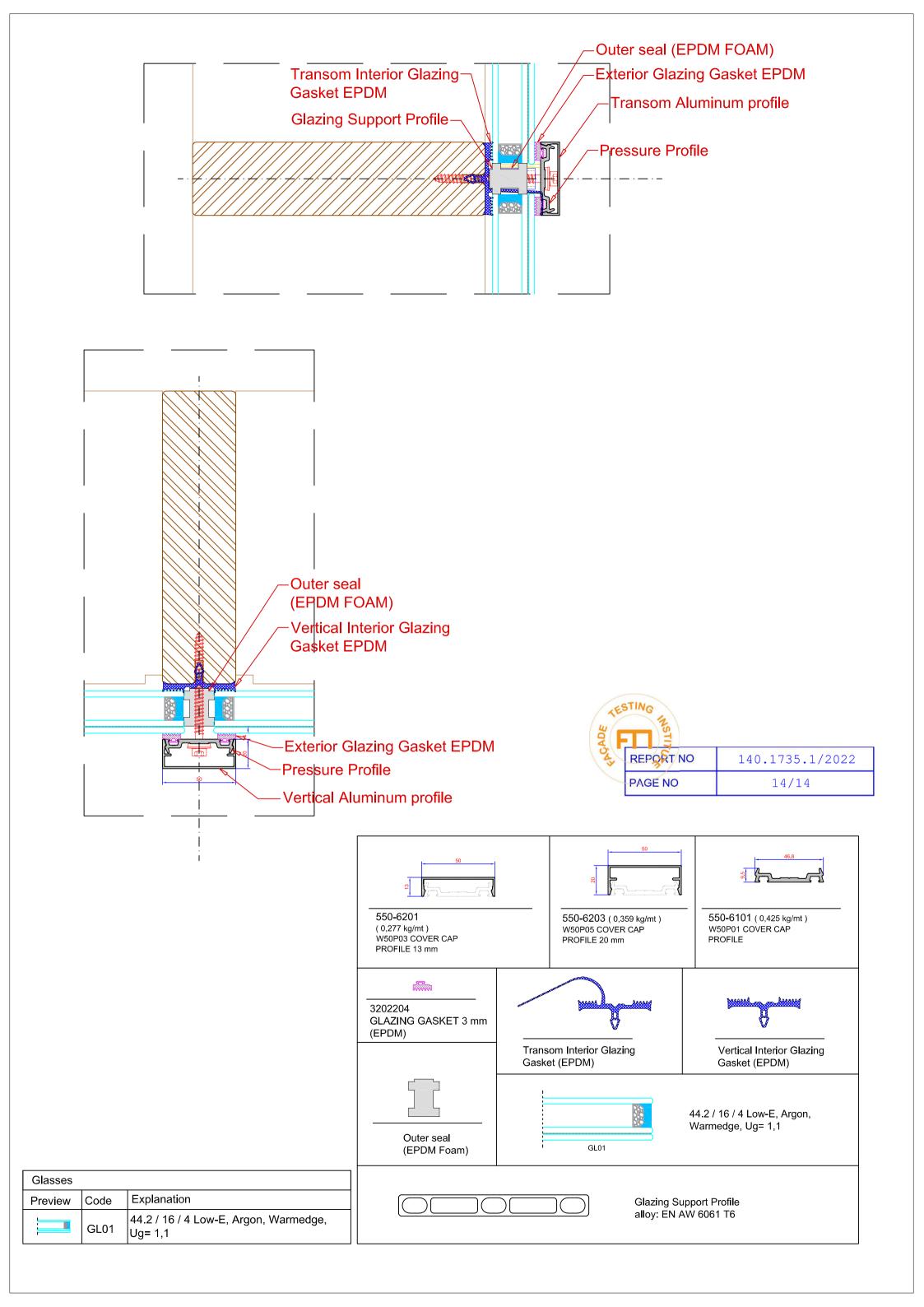
D	Name	Туре	Col.	Boundary T [°C]	R type	R [m²K/W]	Gas type	Flow rate type	Flow rate [W/m²]	U-Factor surface	Flow dir.
0	Internal	Environment air		20.000	Constant	0.1300	Air	Constant	0.000	Use segment settings	
1	External	Environment air		0.000	Constant	0.0400	Air	Constant	0.000	Use segment settings	

	Calculated results for detail tj2 therm	al joint
	Frame Simulator Utj (thermal transmittance of detail tj 2)	Atj2 (Area of detail tj2)
Utj2	2,4805 W/m²K	0,0805 m²

	Calculated results for detail tj2 thermal joint
	Frame Simulator Ug (thermal transmittance of glass)
Ug	1,1 W/m²K




8. Ucw - VALUE ANALYSIS OF MODUL


Parameters of tj ₁ detail	U_{tj1} (W/m 2 K)	A _{tj1} (m ²)	U _{tj1} * A _{tj1}
Farameters of tj ₁ detail	2,4352	0,08926	0,217365
Parameters of tj ₂ detail	U_{tj2} (W/m 2 K)	A _{tj2} (m ²)	$\mathbf{U_{tj2}}^{*} \mathbf{A_{tj2}}$
raidilleters of tj ₂ detail	2,4805	0,0805	0,19968
Glass	U _g (W/m²K)	A _g (m²)	$\mathbf{U_g}^* \mathbf{A_g}$
GidSS	1,1	1,35658	1,49224

$U_{cw} =$	$\frac{\Sigma \left(A_{g} * U_{g}\right) + \Sigma \left(A_{tj} * U_{tj}\right)}{\Sigma \left(A_{g}\right) + \Sigma \left(A_{tj}\right)}$
$U_{cw} =$	1,25 (W/m²K)

Measurement uncertainty is not included in the test / calculation results and declarations of conformity.

